
DynEx: Dynamic Code Synthesis with Structured Design
Exploration for Accelerated Exploratory Programming

Jenny Ma
jenny.ma@columbia.edu
Columbia University

New York, New York, USA

Karthik Sreedhar
ks4190@columbia.edu
Columbia University

New York, New York, USA

Vivian Liu
vivian@cs.columbia.edu
Columbia University

New York, New York, USA

Sitong Wang
sw3504@columbia.edu
Columbia University

New York, New York, USA

Pedro Alejandro Perez
pap2153@columbia.edu
Columbia University

New York, New York, USA

Riya Sahni
rs4640@columbia.edu
Columbia University

New York, New York, USA

Lydia B. Chilton
chilton@cs.columbia.edu
Columbia University

New York, New York, USA

Figure 1: DynEx is an LLM-based system for exploratory programming. It guides users through a design space using a structured
Design Matrix. Based on the Design Matrix content, DynEx brainstorms the necessary requirements needed to build the UI,
generates a detailed project spec to translate the abstract concepts into an implementation plan, and generates synthetic
placeholder data to better prototype the application. DynEx then breaks down the project into tasks, which users can iteratively
implement until they create a working prototype. Users can incrementally add features until they are satisfied, and also create
a variety of new prototypes using the system.

Abstract
Recent advancements in large language models have significantly
expedited the process of generating front-end code. This allows
users to rapidly prototype user interfaces and ideate through code,
a process known as exploratory programming. However, existing
LLM code-generation tools focus more on technical implementa-
tion details rather than finding the right design given a particular
problem. We present DynEx, an LLM-based method for design ex-
ploration in accelerated exploratory programming. DynEx uses
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LLMs to guide users through a structured Design Matrix to explore
the design space before dynamic iterative implementation. It also
introduces a technique to self-invoke generative AI, enabling the
creation of a diverse suite of applications. A user study of 10 ex-
perts found that DynEx increased design exploration and enabled
the creation of more complex and varied prototypes compared to
a Claude Artifact baseline. We conclude with a discussion of the
implications of design exploration for exploratory programming.

CCS Concepts
• Human-centered computing → User interface program-
ming.

Keywords
code synthesis, exploratory programming, design exploration, de-
sign matrix, user interface, prototyping
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1 Introduction
Recently released large language models (LLMs) have shown re-
markable capabilities in generating code, particularly front-end
code [35]. This allows users to get ideas off the ground faster by
building code-based user-interface (UI) prototypes and testing them
directly in real world contexts, a process known as exploratory pro-
gramming. Exploratory programming is crucial for experimental
projects where real design testing is more productive than upfront
specifications. Many interactions are difficult to simulate in low-
fidelity prototypingmediums, particularly when testing data-driven
applications [4]; prototyping is crucial in these cases to truly test
ideas. LLM code-generation abilities present a unique opportunity
to accelerate exploratory programming and ideate through code.

When prototyping, however, translating abstract concepts into
concrete implementations is a challenging process [40]. There is a
gap in going from an idea to a working solution because initial ideas
often lack clear boundaries, structured organization, and concrete
details. Converting an initial idea into a feasible design requires a
detailed consideration of multiple aspects: users must fully consider
the problem being solved, the target user of the application, the
approach or methodology, and the interaction paradigm or user
experience [3]. Each of these elements must be defined before mov-
ing forward with implementation, making the transition from idea
to design a complex and multifaceted process.

Existing tools that leverage LLM code-generation capabilities,
such as GPTPilot [32] and OpenHands (formerly OpenDevin) [43],
predominantly focus on code development rather than creating
an application that considers the end-user experience. GPTPilot
prompts the user to consider implementation-level details, such as
which packages to use, rather than broader aspects of the user’s
ideas, like who the application is for, what problem the application
is trying to solve, and what the core methodology is for guiding
the solution. Claude Artifact is more suitable for exploration as it
enables users to chat with the LLM, but its fundamentally unstruc-
tured approach can also be limiting. Users easily become fixated on
implementation over exploration, appending features onto proto-
types linearly rather than using the chat-bot to laterally exploring
their problem space [2]. Ultimately, emphasis on implementation
over user-centric design can lead to design fixation [1]; users may
be led down one path of technical implementation, but lack the
divergent exploration that can enable them to find the most fitting
approach for their problem [8]. These applications may function
well technically, but can lack the depth of refinement that helps
ground a prototype in real user needs.

In exploratory programming, it is crucial to explore different
solutions before implementation [34]. Our approach is to integrate
design with code synthesis. Before implementing a solution, we
consider many factors, such as the user (who are they and why do
they want this?), the core approach (for a learning application, are

you following a learning theory like spaced repetition or generation
and elaboration?), and the interaction paradigm (if you are building
a crowd-sourced hotel search platform, are you basing it off of an
existing paradigm like Uber, or a card-swipe paradigm like Tinder
for low cognitive load?). By providing a structured framework for
design exploration, we can guide users to collaborate with LLMs in
exploring a problem space. Combined with their code-generation
capabilities, LLMs can assist users in creating user-centric, code-
based UIs that serve as both functional prototypes and stepping
stones towards final products.

We present DynEx, an LLM-based method for exploratory pro-
gramming for functional UIs. DynEx helps the user build code-
based UI prototypes in two stages: (1) structured design exploration
through a Design Matrix, and (2) dynamic iterative implementa-
tion with LLM code synthesis. The Design Matrix brainstorms
unique ideas through through idea generation to help users ex-
plore the design space. The idea is then grounded, a process to
synthesize abstract ideas into detailed application designs. The sys-
tem next breaks down the project into steps to execute iteratively,
and generates code that self-invokes multi-modal LLMs to produce
applications that have larger sets of synthetic placeholder data,
can generate images, and provide recommendations, enabling the
creation of a diverse suite of applications.

Our contributions are as follows:

• DynEx, an LLM system for accelerated exploratory program-
ming where the user inputs a problem they want to solve
and rapidly creates UI prototypes. The system guides users
through a design space, then allows users to iteratively gen-
erate and interact with UI code. Users can create multiple
variations of prototypes and iteratively refine their ideas.

• the Design Matrix, a structured framework using LLMs to
guide users through the design space by considering the
person, approach, and interaction through idea generation
and grounding.

• Self-invoked multi-modal LLMs, a technique for building
code-based UI prototypes where the generated code can call
other LLMs to create a diverse and rich suite of applications.

• A qualitative evaluation of 10 experts, demonstrating that
DynEx enabled them to explore the design space and create
more complex and varied prototypes as compared to a Claude
Artifact baseline where users must lead the design process
themselves.

2 Related Works
2.1 Exploratory Programming and Prototyping
Exploratory programming is a practice in which programmers ac-
tively experiment with different possibilities using code [4]. It is
grounded by 5 main characteristics: (1) Needs for Exploration, (2)
Code Quality Tradeoffs, (3) Ease or Difficulty of Exploration, (4)
Exploration Process, and (5) Group or Individual Exploration. Like
other prototyping methods, it is important to consider the cost
of exploratory programming compared to its value in providing
insights [39]. Exploratory programming for UI creation must be
as easy and quick as possible while still creating functional code.
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It must also produce sufficiently complex interfaces that can ac-
tually inform designers on how users will interact with them. Fi-
nally, it is crucial that exploratory programming processes support
lightweight version control so that individuals can easily see the
variations they create [19].

Prototyping and exploratory programming are forms of creative
problem-solving. During exploratory programming, designers it-
eratively test and refine ideas via code. The ability to generate
multiple alternatives, explore directions, and revert to previous
versions have been labeled as requirements for creativity support
tools [34]. Past research demonstrates the effectiveness of proto-
typing during design [8, 9]. Learning theory research suggests that
generating variations of outputs enables critical reflection and deep-
ens understanding in problem domains [25]. Prototyping has been
demonstrated to be effective in serving as a means of inquiry to
increase granularity of design requirements based on user reac-
tions [18, 46]. However, it is not always possible to prototype UIs in
low-fidelity mediums. Applications often change requirements and
need to support complex user interactions [6]. Even higher-fidelity
approaches like Figma [10] also have limitations in modeling the
interactive experience of a UI. It can lack the richness of user ex-
perience that comes from even simple backend computation or
data processing [4] and have other time and resource costs [39].
Exploratory programming addresses these issues, allowing for the
prototyping of code-based interactive applications.

2.2 LLM-Based Tools for Code Generation
2.2.1 LLM-Based Code Synthesis Tools. State of the art models for
code generation include GPT-4, AlphaCode, CodeGEN, Code Llama,
and Gemini [13, 21, 26, 29, 30]. These models generally performwell
in transforming a natural language problem specification into a sim-
ple code solution. They are generally most effective at creating code
segments for specific functions or features. Systems built around
these LLMs show promise for improving LLM-code generation be-
yond direct prompting. However, many of the UI code generation
tools have limitations. For example, Co-Pilot [11] is a system that
can modify existing code repositories, but it does not support end-
to-end code generation. OpenHands [43] and GPTPilot [32] are
open-source agent driven systems for end-to-end software devel-
opment. They use separate LLM agents to represent various roles
within the software development process and implement a tech-
nical specification. However, these systems lack the support for
exploratory programming that is embedded in DynEx, which helps
users explore during the planning and problem specification stages
of development.

2.2.2 LLM-Based Code Synthesis Tools for UIs. LLMs have been
proven to be especially good at creating UI code. Specifically, LLMs
have been shown to be extremely apt at writing code from provided
UI screenshots and designs [23, 33, 35, 36, 42, 47, 50, 52]. LLMs
have also shown the ability to write UI code from natural language
prompts; WebSim is a system which enables users to created simu-
lated UIs with minimal prompting [44]. However, these systems do
not offer users much design support, placing the brunt of ideation
and design space exploration on the user. DynaVis is a tool that
dynamically synthesizes widgets for data visualization UI. While it

allows users to make dynamic components, it does not support the
creation of a complete user interface [41].

Claude Artifact [2] likely offers the best out-of-the-box solution
for UI prototyping. It creates functional UIs from conversational
prompts, provides users with a window for rendering, and keeps
track of version history. However, Claude Artifact does not guide
users through the design exploration process. The onus is on the
user to use repeated prompting to add new features and move
towards a solution. Given that LLMs have demonstrated the ability
to effectively power creativity support tools and perform divergent
design space exploration in other domains [31, 37, 51], it should be
possible to build LLM systems that support both design exploration
and implementation for UI prototyping.

2.3 Informing the Development of LLM-Based
Creativity Support Tools

It is necessary for LLM-Based creativity support tools to have suffi-
cient structures for users to create and compare variations within
the design space [34]. Moreover, users need to be able to think
through all dimensions of their problem, which is a challenging
task for people to do on their own [24]. When left to their own de-
vices, people tend to prematurely converge on ideas before thinking
through all possibilities [7, 9, 15, 16].

Prior work enables thorough design space exploration by helping
users define dimensions to explore. Luminate [37] is a system for
exploring design spaces for narratives based on dimensions that
can characterize the design space. Users can arrange and cluster
generated outputs based on dimensions such as genre, tone, or
setting to structure the design space. Other LLM-based writing
support tools use pre-defined dimensions such as feasibility and
usability, as opposed to synthesizing dimensions on the fly [12].
We realize this dimensional thinking in DynEx’s Design Matrix.
By having users traverse through the Design Matrix before any
implementation occurs, DynEx forces users to thoroughly think
through all of the dimensions of the problem.

Self-referential multi-modal LLMs have been demonstrated to
improve the outputs of LLM-based systems. WebSim [44] utilizes
self-referential LLMs to generate images for created UIs. Jigsaw is a
system for prototyping that utilizes puzzle pieces as metaphors to
represent AI foundational models [22]. This representation allows
users to understand and chain foundational model capabilities for
the creation ofmore complex outputs.We build upon self-referential
LLMs in DynEx by self-invoking methods that can allow for the cre-
ation of images or placeholder data, and emulate recommendation
or sensemaking systems to power the UI prototypes.

There are several other factors we consider more broadly that
are relevant to LLM-systems. First, many tasks are too complex
for LLMs to accomplish in one prompt and have to be broken
down into smaller problems [48, 49]. LLMs are also more successful
in accomplishing tasks when asked to create a plan and reason
through intermediate steps [5, 20, 38, 45]. Creating a complete UI
is clearly a involved task; DynEx breaks down the project into
steps to create an implementation plan that can be iteratively ex-
ecuted. Second, tasking non-AI experts with writing many trivial
prompts can reduce the effectiveness of LLM-systems [5, 53]. In
prior prototyping studies, users spent excessive time debugging and
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iterating on prompts [17]; thus, DynEx has structured prompting
that enables users to focus their energy on expressing their ideas
as opposed to prompt engineering for functional outputs. Finally,
the difficulty in sourcing example data has limited the success in
prototyping with LLMs. [17]. DynEx therefore has specific func-
tionality to self-invoke LLMs and easily create synthetic data for
applications.

3 System
We present DynEx, a LLM-based system for accelerated exploratory
programming that assists users with design exploration and code
implementation. The input is the problem that the user wants to
solve. It can be vague idea, such as an application to help with plant-
watering or meal-planning; something that the user does not have
a clear solution for. The output is a functional UI that can support
placeholder data, images, and dynamic data. It is an HTML page
written in Javascript, HTML, and CSS, that also utilizes React [27]
and Material UI Library [28], a comprehensive React component
library offering foundational elements like buttons, dropdowns,
input forms, and more.

DynEx is designed for programmers who have personal projects
and unrealized ideas they want to explore. Many of these ideas
remain underdeveloped or unrealized for years, if not indefinitely.
Bringing these ideas to fruition is challenging because it not only
requires developer experience to prototype the idea in code, but
also requires addressing gaps in the design. DynEx helps concretize
users’ ideas through design exploration and implementation, allow-
ing them to take a crucial step towards creating a minimal viable
product (MVP).

The pipeline has 2 steps:
(1) Design Exploration through the Design Matrix, where

the system helps the user identify the person, approach, and
interaction paradigm of the application using idea generation
and grounding, a method of specifying ideas to become a
more solidified design.

(2) Dynamic Iterative Implementation, where the system
generates code iteratively, allowing for user input at every
step, until the creation of the final prototype. Our implemen-
tation process supports the generation of synthetic place-
holder data and self-invokes multi-modal LLMs, a technique
for the generated code to call other LLMs to create a dynamic
and diverse suite of applications.

The system was written in Python, Typescript, and Flask. We
use GPT-4 in our Design Matrix for design exploration – due to
its vast understanding across various domains, it is well suited for
brainstorming and refining ideas.We use Claude 3.5 Sonnet for code
generation – Claude is known to be better at writing UI code, and it
enables us to use Claude Artifact as a baseline for comparison in our
evaluation. Claude is also highly responsive to explicit instructions,
which is crucial for code-generation.

3.1 Design Exploration through the Design
Matrix

A user begins by suggesting a problem they would like to solve,
such as “I need reminders water my plants” or “I need to plan my
meals”– it can be vague, something they have not thought of a

solution for. Once submitted, the user is led through the Design
Matrix, a structured framework that guides users through the design
space. The matrix is centered on three key dimensions that are
foundational to user-centric design, which make up the columns:

(1) Person - who the application is for.
(2) Approach - the method, theory, or strategy behind the solu-

tion.
(3) Interaction - the core user interaction paradigm, such as a

table, card-swipe, news feed, or chat-bot layout.
Each dimension is explored on two levels of specificity, which make
up the rows of the matrix:

(1) Idea: the brainstorming of the higher-level concepts across
each dimension

(2) Grounding: the solidification of foundational details through
iterative deepening that specifies how the idea should be
developed. For example, if the user selected a card-swipe UI
as the interaction paradigm, the grounding should specify
what information exists on each card, what swiping right
means, and what swiping left means.

Fig. 2 illustrates the Design Matrix, with columns for Person,
Approach, and Interaction, and rows for Idea and Grounding. The
Design Matrix facilitates the transformation of abstract concepts
into actionable design components, allowing the user to fully un-
derstand their problem and solution space before settling on a
prototype design.

3.1.1 Design Matrix Interaction. Users can traverse through the
Design Matrix in any order, as long as they submit the Idea before
the Grounding level for each dimension. On the Idea level of speci-
ficity, the system help users brainstorm different ideas through
divergent thinking; the Grounding level of specificity solidifies
the idea through convergent thinking. To reference entries in the
matrix, we use a column:row notation; for example – Person:Idea,
Approach:Grounding.

In order to ground the idea, the idea must be already submit-
ted for that particular dimension; Person:Idea must be submitted
before Person:Grounding, Approach:Idea must be submitted before
Approach:Grounding, and Interaction:Idea must be submitted be-
fore Interaction:Grounding. Otherwise, the user can brainstorm the
Person, Approach, and Interaction dimensions in any order. For
example, if the user has the application idea of “tinder for groceries”,
the interaction paradigm is clear – they want a card-swipe UI. They
can fill out the Interaction dimension first before formalizing the
Person and the Approach. If the user wants to build a journalling ap-
plication to help with mental health that uses cognitive behavioral
therapy (CBT) principles, they can fill out the Approach dimension
to use CBT before filling out the Person and Interaction dimensions.

We use context curation to guide the outputs of each entry in
the matrix. The system takes in all previously-submitted entries of
the matrix, since they are already-known aspects of the project, to
help inform the response of the current entry. The previous entries
used as context are highlighted in yellow on the UI for the user to
visualize (see Fig. 2 - I). If the user chooses to resubmit a dimension
on the Idea level, the Grounding for that dimension will not be
factored in the context. Responses for each entry were generated
using few-shot examples and can be found in Appendix 8.
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Figure 2: DynEx’s Design Matrix User Interface: Users traverse through the matrix, which guides them through exploring the
Person, Approach, and Interaction dimensions relevant to the problem space. For each dimension, users begin on the Idea level
by inputting their problem (A). They then brainstorm ideas (B), and can iterate on the ideas (C). They can select an idea (C) and
submit it in the input box (E). They then move on to the Grounding level, brainstorm a response (F), and submit that as well.
They have the option to save versions (G), in case they want to move back to the Idea level and explore a new idea. Previous
entries used to curate the current entry response are highlighted in yellow. Finally, users can can explore the prototype (H).

The next sections dive into the specifics of each matrix entry,
using amotivating example to illustrate the process. The user inputs
a problem they want to solve: learn Chinese.

3.1.2 Person. The user collaborates with the system to brainstorm
who the application is for in Person:Idea. The system brainstorms
potential target users and returns 3 results:

(1) "Non-native speakers interested in Chinese culture"
(2) "Visual learners struggling with language memorization"
(3) "Travel enthusiasts planning a trip to China"

Each of these cases have nuances; for (1) the user would probably
be more interested in creating an app to learn Chinese culture
rather than Chinese words; for (2), the user prefers a visual learning
application; for (3), the user would probably focus more on learning
travel-related vocabulary and phrases.

The user can generate as many ideas as they want, iterate on
them and re-brainstorm, or directly update the input box. For ex-
ample, if the user wanted more results that focused on learning
Chinese culture, they could type that in the iteration box and brain-
storm ideas along that direction. The user chooses to brainstorm
more ideas, and 3 more ideas are added to the list:

(4) "Retired adult wanting to expand linguistic skills"

(5) "Busy university student wanting to study Chinese in his free
time"

(6) "Chinese-born American looking to brush up language skills"

All of these results have different implications as well. For (4), the
retired adult presumably has more time to learn Chinese – their
method for learning would be different than (5), the busy univer-
sity student who can only study at short intervals. Additionally,
(6) presents a different use-case, a user who already has existing
Chinese knowledge. Ultimately, the user selects (2) "Visual learners
struggling to learn with language memorization". The user moves
on to Person:Grounding to iteratively deepen their idea.

When grounding the Person dimension, the system aims to fully
understand the user goals, challenges, and the broader context in
which the problem should operate. Person:Grounding also defines
the specific problems that users face, some shortcomings of existing
solutions, and how the application would address these gaps. It
takes in Person:Idea as context, which turns yellow on the interface.
The system presents a list of bullet points that deepen the idea:

• "Confusion arises due to unfamiliarity with Chinese characters
and their complex structure, slowing the learning process"

• "Difficulty in linking characters to their correspondingmeaning
or pronunciation, hindering vocabulary acquisition"
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• "Traditional memorization methods offer little aid to visual
learners who could better recall information through imagery"

The user can directly edit, save this version, or iterate on it. Once
they are satisfied, they can submit their result and move on to the
Approach dimension.

3.1.3 Approach. In the Design Matrix entry for Approach:Idea, the
system brainstorms methods or strategies that the application could
employ to solve the problem, given the existing context of the ma-
trix. Since Person:Idea and Person:Grounding were submitted, those
entries are highlighted yellow and used to inform the Approach:Idea
response. The system presents 3 Approach ideas:

(1) "Pictorial spaced repetition learning"
(2) "Visual storytelling for language acquisition"
(3) "Cognitive load theory for efficient memorization"

The user can generate as many ideas as they want, iterate on them
and re-brainstorm, or directly update the input box. The user is
intrigued by (1) "Pictorial spaced repetition learning", and (2) "Visual
storytelling for language acquisition". They select (2) "Visual story-
telling for language acquisition" andmove on toApproach:Grounding
to explore more details.

In Approach:Grounding, the system concentrates on the practical
implementations by defining the essential components and logic
required of the chosen approach. It takes in the existing matrix as
context - Person:Idea, Person:Grounding, and Approach:Idea. For (2)
"Visual storytelling for language acquisition", the system returns:

• "Integrate visual aids, such as illustrations or animations, that
correlate with each word’s meaning to enhance understanding
and recall"

• "Develop an algorithm that links related words and images
together in a meaningful story, promoting stronger memory
associations"

• "Make use of GPT to generate context-rich sentences or mini-
stories, helping to create a narrative around each word or char-
acter"

• "Ensure design of the learning material caters to visual learners,
with a focus on vibrant, engaging, and contextually relevant
graphical representations"

The user feels inspired by this, and saves it using the “save version”
button in case they want to come back to it (see Fig. 2 - G). The
user goes back to Approach:Idea and selects (1) "Pictorial spaced
repetition", then moves back to Approach:Grounding. The system
generates this:

• "Implement the spaced repetition system (SRS) algorithm to
schedule review times according to each user’s progress, allow-
ing items to reappear before they’re likely to be forgotten"

• "Incorporate visual images representing Chinese characters or
words, enhancing the memory association between visual cues
and corresponding meanings"

• "Integrate regular reviews into the learning process, which
are fine-tuned according to the user’s performance, to further
solidify memory and retention"

• "Leverage cognitive science principles such as interleaving
(mixing similar tasks) and retrieval practice (recalling an item
from memory), to increase learning effectiveness"

The user decides (1) "Pictorial spaced repetition" is more suitable for
their current needs, and moves on to the Interaction dimension.

3.1.4 Interaction. In the Design Matrix entry for Interaction:Idea,
the system brainstorms the high-level interaction paradigm of the
application, such as a swipe interface or chatbot. In this example
it takes in the Person and Approach dimensions as context. The
system returns

• "Simple guess-and-review quiz interface"
• "Visual dictionary flashcard interface"
• "Image-based language learning game interface"

The user selects (1) "Simple guess-and-review quiz interface" as the
idea andmoves on to Interaction:Grounding. In Interaction:Grounding,
the system specifies the features and details of the UI components.
It determines what information will be displayed, the nature of user
interactions, and how these elements will contribute to the overall
user experience. The grounding is provided:

• "The quiz interface should present the Chinese character or
word along with its corresponding image"

• "The user then attempts to guess its meaning. If they respond
accurately, the item is pushed back into the review cycle based
on the SRS algorithm"

• "If the guess is incorrect, the correct meaning is displayed, and
the item is scheduled for another review sooner"

• "Users should have a clear view of their progress and a way to
navigate to previously learned words for self-study"

The user is happy with this and submits it. Now that the Design
Matrix has been traversed, they can begin implementation in code.

3.2 Dynamic Iterative Implementation With
LLM Code-Generation

DynEx leverages LLM code-generation capabilities to create the
prototype. DynEx self-invokes multi-modal LLMs to enable the
creation of a rich suite of applications. While prototypes should
be simple, they need a minimum level of complexity and detail in
order to properly emulate the user experience. Applications with
images should be prototyped with images, applications that require
data need relevant data, and applications that require dynamic data,
such as personalization or recommendation apps, should be able
to replicate that. Because our generated code calls generative AI,
we enable the creation of rich applications that can sufficiently
prototype the user experience.

The system first identifies the project requirements, creates the
project specification (spec), and generates synthetic placeholder
data if required (see Fig 3- C, D E). Once the initial setup is complete,
the user and system collaborate in creating the prototype through
step-by-step implementation, where the system breaks down the
implementation plan into steps (see Fig 3- F). Because project speci-
fications are often complex and detailed, attempting to complete the
application with a one-shot approach often results in key elements
being missed, leading to non-functional prototypes. With missing
functionalities, users can spend unnecessary time debugging and
adding features to align with the initial spec. Breaking down the
spec into manageable steps ensures that details are not missing
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Figure 3: DynEx’s Implementation User Interface: Users can navigate between existing prototypes (A) and create new prototypes
(B). Users are suggested and can select from a list of potential project requirements (C). Users are able to edit the project
specification (D) and view/modify placeholder data if it is required (E). DynEx breaks down the project specification into
implementation steps (F) which can be edited, added, and removed by users (G). Users generate code (H) step-by-step. Users can
iterate via natural language (I), toggle between versions (J), and view generated code (K) and interact with UIs (L).

in the final prototype. Furthermore, our iterative step-by-step ap-
proach saves the code at each stage, providing a natural form of
version control.

3.2.1 Project Requirements. Before implementation, the system
identifies prerequisite project requirements and generates a (spec)
(see Fig 3- C, D, E). The project requirements detail whether or not
the prototype requires GPT, images, placeholder data, or supported
external libraries. The system brainstorms these requirements us-
ing the Design Matrix as context. Users can manually update and
change the project requirements if needed - for example, if the
application is a book recommendation app, and DynEx did not
recommend the images as a requirement, the user can add that
requirement themselves if they so please. Using the project require-
ments and Design Matrix as context, the system then generates
a project specification to translate the abstract ideas across each
dimension into a technical implementation.

Self-invoked Multi-Modal LLMs. Our project requirements in-
clude the ability to call GPT and generate images. To do this, we
introduce a technique to self-invoke multi-modal LLMs, enabling

the creation of a diverse suite of applications. This allows our code to
generate dynamic data, create images, and even return code through
LLMs. In software development, it is common to rely on third-party
application programming interfaces (APIs) to enhance functionality.
For example, travel websites can call the Google Flights API for
flight information, and restaurant recommendation applications
can call the Yelp API for restaurant data. Generative AI APIs are
among the most powerful and versatile, excelling at handling a wide
variety of tasks. By self-invoking multi-modal LLMs, we can build
applications that are otherwise not supported by static data; for
example, book recommendation applications that require dynamic
data from LLMs, wardrobe visualization applications that can call
image models, and note-organizational applications that can use
LLMs to categorize notes and sensemake. LLMs are a powerful tool
to self-reference when generating code for exploratory program-
ming. It allows us not only streamline the development process and
rapidly prototype applications, but also create more dynamic and
functional UIs.
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Dynex self-invokes GPT-4 and DALL-E 2 to enable dynamic and
flexible content creation based on the project requirements. We use
few-shot examples to support this technique; if GPT or Images is
selected as a requirement (see Fig 3- C), we provide different code
examples of calling GPT-4 or DALL-E 2 in the back-end prompt to
guide the self-invocation. If these requirements are not needed, we
omit those examples. For our example to learn Chinese, "images" is
selected – DynEx will self-invoke DALL-E 2 to generate images for
the prototype.

External Libraries. DynEx further enhances functionality with
pre-approved libraries like Chart.js, an open source javascript li-
brary used for creating interactive and visually appealing charts
on websites, and GoJs, as javascript library for creating interactive
diagrams such as flow charts, mind maps, and process diagrams. A
common issue with LLM code-generation tools is their difficulty in
handling external libraries and packages. OpenHands can get stuck
in an loop installing unusable packages, while tools like Claude Ar-
tifact fail when trying to import non-existent component libraries.
These limitations pose significant challenges for generating reliable
code with LLMs. To prevent this, we restrict our system to use only
the MUI React Library and third-party API calls outside of OpenAI.
However, this restriction can limit the complexity of generated
applications, so we allow the use of Chart.js and GoJS for creating
charts and diagrams. When our system recommends these libraries
as requirements, we use few-shot code examples to ensure smooth
integration. We can expand the list of pre-approved libraries this
way to ensure safe and reliable code generation. For our example,
neither Chart.js or GoJS is identified as a project requirement.

Project Specification. DynEx generates a project specification
(spec) (see Fig 3- D), a detailed overview of the prototype idea
which connects the concepts from the Design Matrix to flesh out
the application layout, user interaction, and logic of the app. The
spec transforms abstract ideas into actionable implementation in-
structions, ensuring the functionality of the app is well-aligned with
the design; it provides a clear roadmap for development. Although
there is potential overlap between the spec and Grounding level in
the Design Matrix, the project specification focuses more on the
technical requirements for the project. If placeholder data is needed,
the spec helps define the schema. If GPT must be self-invoked, it
details what the code should prompt for and the expected response.
Ultimately, the spec drives the implementation plan; DynEx breaks
the spec down into steps to iteratively implement on later on in the
workflow.

In this example, the system determines that placeholder data
and images are necessary components for the UI to be realized. The
spec details that the system must generate placeholder data with
fields that include Chinese words and phrases, images, and IDs. It
also details that images must be returned for each quiz question to
assist with visual learning.

Synthetic Placeholder Data. DynEx also enables the generation of
synthetic placeholder data (see Fig 3- E). By using the spec and the
Design Matrix as contextual inputs, it creates realistic placeholder
data to serve as the foundation for building data-driven prototypes.
We leverage few-shot examples with LLMs to guide the generation

of relevant and appropriate placeholder data. The user can regen-
erate, approve, or modify the outputs. In our example, the user
generates placeholder data, providing the prototype with a solid
base of Chinese phrases to practice with, making this step essential
for effective app development.

3.2.2 Step-by-step Implementation. To implement the prototype,
we employ a dynamic, iterative approach to development that al-
lows for human direction at every step, which can be seen in Fig 4.
The system breaks down the spec into steps, where each step is the
next-smallest testable iteration of the previous step. In our example,
the step list is broken down to:

(1) "Set up the React application and create the main layout with
the three sections: ’Flashcards’, ’Quiz’, and ’Progress’"

(2) "Implement the ’Flashcards’ section"
(3) "Implement the ’Quiz’ section, utilizing the spaced repetition

algorithm"
(4) "Implement the ’Progress’ section"
(5) "Call GPT to generate images for the Chinese characters"

The user can regenerate, approve, or modify this task list.
The system next executes steps sequentially. In our example, the

system implements (1) "Create the HTML structure". The system
generates the initial code, and the UI is rendered for the user to
interact with. If there are failures, the user can debug by iteratively
prompting the system in the right direction to regenerate code (see
Fig 4 - I), redoing the step (see Fig 4 - H), or debugging the code
by hand (see Fig 4 - K). Once the user confirms that it works, they
can proceed to (2) "Implement the ‘Flashcards section’." The user
does not modify the step and clicks the button to generate the code.
Once the user tests and approves step 2, they can move on to (3)
"Implement the ‘Quiz’ section."

Debugging and Iteration within Steps. At (3) "Implement the ‘Quiz’
section," there’s an error with the “submit” button in the ‘Quiz’
section. Instead of displaying the next quiz question, it displays
both the next quiz question and the next quiz question’s answer.
To fix this, the user can make use of the “Iterate” box to debug the
program by explaining the bug through the prompt (see Fig 4 - I).
The prompts the system to fix this bug: “After I click submit, it
moves on to the next question but also shows the answer of the
next question,” and clicks “Iterate”. After generating the code, the
debugged UI and code is shown on the system. Users can iterate as
many times as they want and switch between versions until they
are happy with the final step output(see Fig 4 - J).

Feature Adding. The user tests and approves step 3, and moves
on to steps (4) "Implement the ‘Progress’ section" and (5) "Call GPT
to generate images." Thus, the user has completed the original im-
plementation plan. Dynex enables users to add more features as
they test prototypes. After using the app and testing it out, the user
decides they would like another feature: in the flashcards section
where they practice the words, they would like a visual indicator
to show which words they have mastered, and which words they
are not familiar with. The user adds a step 7 to do so (see Fig 4 - G).

Version Control. By breaking our project into distinct steps, where
users can update, remove, and add features, we enable version con-
trol. Each step is saved, creating a clear version history that captures
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Figure 4: DynEx User Process: The system first decomposes the project into steps that are modifiable by the user. The user
iteratively implements each step. The user can add, remove, or update steps at any point. The backend LLM then generates the
UI code – the user can also interact with the UI . The user can directly modify the code output, debug, and revert to previous
versions. The user iterates through steps until the final prototype is complete

the most advanced working prototype while offering the flexibility
to iterate between versions. This means that users can easily revert
to prior working states if they want to reconsider a feature, without
worrying if leftover changes will affect the process.

Since LLM code-generation can sometimes produce faulty or
unusable code, this stepwise approach serves as a safety net where
users can always fall back on the last successful version, ensuring
that they always have a stable point to return to. While this is not
a main contribution of our system, it’s essential to support version
control in exploratory programming to provide structure and safety
in an unpredictable process, protect users from irreversible errors,
and support smooth iteration.

3.3 Creating Multiple Prototypes
Once a prototype is created, users can create additional prototypes
by revisiting the Design Matrix, tweaking parameters, exploring
variations, and comparing the results (see Fig 4 - B). The different
prototypes are displayed in the sidebar of DynEx (see Fig 4 - A),
allowing users to easily revisit any prototype, pick up where they
left off, and continue iterating. Users can modify entries in the
Design Matrix and re-implement new designs to generate a diverse
set of prototypes. This is a consistent method with exploratory
programming, empowering users to explore multiple solutions in
parallel and refine their designs through hands-on iteration.

4 Evaluation
To evaluate DynEx as a system for exploratory programming, we
conducted a user study that focused on the following research
questions:

• RQ1: Divergence - To what extent does DynEx enable di-
vergent exploration within a problem space?

• RQ2: Convergence - To what extent does DynEx allow
users to better develop their idea?

• RQ3: Implementation - To what extent does DynEx enable
the code to realize a complex idea?

• RQ4: Overall - Towhat extent does DynEx allow for a better
prototyping experience?

4.1 Methodology
4.1.1 Participants. Our evaluation was conducted through a qual-
itative study of 10 programmers (6 male, 4 female); there were 6
industry software developers and 4 CS students, all with many
years of technical experience. They were recruited through a snow-
ball sampling of local university students and alumni. Information
regarding the participants age, role, and years of technical exposure
are included in Table 1. Participants were paid $20 per hour for
their time, and the study was conducted with each participant for
approximately 90 minutes.

4.1.2 Task. Participants were asked to name a problem that they
would like to explore a solution for. The taskwas to explore concepts
and prototypes that would help solve their problem. They were
asked to produce a MVP per system. Participants had a broad range
of ideas, from recommendation applications for movies, clothing,
and restaurants, to a friend-activity sharing app, to a rap ghost-
writing assistant (see Fig 6). They tested two systems: DynEx and
Claude Artifact.

4.1.3 Claude Artifact. We compared DynEx against Claude Arti-
fact, an industry standard tool, as the baseline. Claude Artifact is
a chatbot, where every prompt elicits a UI and non-editable code.
The chat screen is on the left, and the Artifact to interact with the
UI is on the right. The user can prompt the chatbot to brainstorm
more ideas or specify more features – an example can be seen in
Figure 5.

Because Claude Artifact can generate functioning code from
short prompts, it is a very powerful tool for prototyping. Claude
Artifact is also widely accessible and creates visually-appealing UIs.
Although it is limited to 4096 output tokens (approximately 450
lines of code), Claude Artifact is a strong baseline because it still
produces rich prototypes and stores long chat histories that track
how the user further developed their application from the initial
idea.

We considered other tools as the baseline, including OpenHands
and GPTPilot. We found OpenHands to be less reliable than Claude
Artifact in producing functional prototypes. In our exploration with
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ID Age Gender Role Years of Technical Exposure
1 20 M Undergraduate Computer Science Student 3
2 25 F Software Engineer at Large Company 7
3 24 F Software Engineer at Large Company 6
4 22 F Software Engineer at Large Company 5
5 25 M Software Engineer at Large Company 7
6 25 M Software Engineer at Large Company 7
7 21 F Master’s Computer Science Student 5
8 24 M Doctoral Computer Science Student 6
9 24 M Doctoral Computer Science Student 6
10 26 M Software Engineer at Start Up 5

Table 1: Demographics of user study participants. Technical Exposure refers to the number of years since the participant first
programmed.

GPTPilot, we found its user interactions limited to technical spec-
ifications. It did not allow for sufficient design space exploration,
which is largely emphasized in DynEx. Since the user has the ability
to engage with design space exploration through the flexibility of
the chatbot interface, we decided Claude Artifact was the most
appropriate baseline for our study.

4.2 Design Exploration through the Design
Matrix

4.2.1 Procedure. An experimenter first explained the concepts of
DynEx through a slide deck that introduced design exploration
and exploratory programming, focusing on user-centric design
principles and LLM code-generation. The experimenter then gave
a demonstration of both systems. For Claude Artifact, the exper-
imenter demonstrated how to prompt it to create a UI and add
features through the chatbot. For DynEx, the experimenter demon-
strated how to use the Design Matrix and iteratively implement,
debug, and add features to their prototype. After the demonstra-
tions for each system, participants were given 30 minutes to create
a prototype using both DynEx and Claude Artifact. Half of the
participants started prototyping with Claude Artifact, and the other
half started with DynEx. After the conclusion of the two tasks, an
experimenter conducted a semi-structured interview to understand
participant experiences.

4.2.2 Ratings and Interviews. After using both systems, partici-
pants were asked to rate their experience across a 1 (bad) to 7 (good)
scale for 10 questions. The first 4 questions were directed towards
the exploratory programming experience. The last 6 questions mea-
sured the participant workload while using each system, using the
NASA Task Load Index (NASA-TLX) [14]. NASA-TLX can assess
the overall success of a system because it provides a comprehensive
measure of cognitive workload, which directly influences user per-
formance and satisfaction. Users were also interviewed afterwards
about their experience with both systems and their thoughts on
the prototypes generated.

4.3 Results
4.3.1 RQ1: Divergence - To what extent does DynEx enable diver-
gent exploration within a problem space? Our evaluation showed
that participants found it much easier to explore different design
ideas when using DynEx as compared to a baseline Claude Arti-
fact. Across 10 participants, DynEx was rated significantly higher
than Claude Artifact in enabling design exploration (average scores
of 6.1/7 and 4.0/7, respectively; see Table 2 or Figure 7). 8/10 par-
ticipants rated DynEx at least a 6/7 in regards to this metric. A
paired t-test shows that difference in ratings of the two systems is
statistically significant at the p = 0.05 level (see Table 2).

Participants reported that DynEx’s system-led brainstorming
was more effective in exploring different possible solutions. All par-
ticipants noted that the system articulated required components of
the application they recognized, or interesting possibilities they had
not considered. For example, P8 stated, "I didn’t start with that many
ideas to begin with on my own. [Without DynEx] I really wouldn’t
have thought of these steps that fast. It was predicting more things
than I had imagined." All participants similarly expressed positive
sentiment about being presented with ideas while using DynEx,
feeling that using Claude Artifact required significantly more men-
tal exertion to come up with such ideas themselves. From these
results, we conclude that DyNex enables users to explore a
broader range of solutions to their problem.

4.3.2 RQ2: Convergence - To what extent does DynEx allow users to
better develop their idea? We found that participants were able to
better develop their initial idea while using DynEx as compared to
a Claude Artifact baseline. Across 10 participants, DynEx was given
an average score of 5.9/7 for convergent thinking, compared to an
average score of only 3.4/7 for Claude Artifact (see see Table 2 or
Figure 7). 7/10 participants rated DynEx at least a 6/7 for convergent
thinking. A paired t-test shows that the difference in ratings of the
two systems is statistically significant at the p = 0.05 level (see
Table 2).

Participants indicated that they were able to sufficiently build
off of their own ideas using DynEx. P9 stated that DynEx allowed
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Figure 5: Claude Artifact Interface: Claude Artifact has a chat interface, where users can prompt the chat and have code returned
instantly. Users can view the code and the UI on the artifact to the right; users cannot edit the code. Users can iteratively append
features to the initial prototype through chat.

them to "incorporate [their] initial idea and helped [them] refine
it." Participants also reported that using DynEx’s Design Matrix
allowed them to better specify the problem that they were trying
to solve, specifically noting that the Person dimension was helpful
to inform the remaining entries of the matrix. Participants also
felt that they were better able to explore the solution space with
DynEx as compared to Claude Artifact. Overall, DynEx was as very
helpful during the design process; P8 stated that they "didn’t think
many [questions were] left unanswered." From these results, we
conclude that DynEx is more successful at developing users
ideas.

4.3.3 RQ3: Implementation - To what extent does DynEx enable
the code to realize a complex idea? Our evaluation demonstrated
that participants were able to create more feature-rich and complex
solutions using DynEx as compared to Claude Artifact. The 10 par-
ticipants scored both systems similarly in terms of code-generation
realizing their ideas (see Table 2 or Figure 7), but there was a major
difference in participant scores regarding the complexity, which
we define as the feature-richness of applications, that were created.

Participants scored DynEx (average of 4.9/7) higher than Claude
Artifact (average of 3.7/7) in terms of the complexity of the applica-
tion produced (see Table 2 or Figure 7), with several describing their
DynEx prototypes as being "more feature-rich" than their Claude
Artifact counterparts. 8/10 participants scored DynEx prototypes
as being at least a 5/7 in terms of complexity, whereas only 3/10
participants scored their Claude Artifact prototypes above 5/7. A
paired t-test shows that the difference in ratings of the two systems
in terms of complexity is statistically significant at the p = 0.05 level
(see Table 2). From these results, we conclude that DynEx is
able to create more complex and feature-rich applications.

4.3.4 RQ4: Overall - To what extent does DynEx allow for a better
prototyping experience? Overall, we found that DynEx was more
successful for exploratory programming compared to Clauade Arti-
fact. In terms of success at accomplishing the task at hand (NASA-
TLX performance), participants on average scored DynEx 5.9/7
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Figure 6: Participant Outputs: UI prototypes created by all 10 participants using both Claude Artifact and DynEx. These UI
prototypes spanned a diverse range of use cases from addiction support with CBT to a rap ghostwriter helper. DynEx allowed
participants ground prototypes around the real-world constraints of a problem such as the Person, Approach, and Interaction.

compared to only 4.2/7 for Claude Artifact (see Table 3). 8/10 par-
ticipants rated DynEx a 6/7 or higher in terms of NASA-TLX per-
formance. This difference in rating was statistically significant at
the p = 0.05 level (see Table 3).

The difference in ratings between DynEx and Claude Artifact
for the remaining NASA-TLX metrics (mental demand, physical
demand, temporal demand, effort, and frustration) were statistically
insignificant (see Table 3). However, there were still interesting
findings for the mental effort and demand metrics. The NASA-TLX
score for both had a large range of responses; many participants
found that DynEx gave them freedom to think conceptually, but

also required them to read and wait more as compared to Claude
Artifact. However, while using Claude Artifact, users expressed that
it required more mental exertion to brainstorm ideas and guide the
prototypes development direction. Hence, depending upon user’s
preferences (i.e., do they prefer reading LLM-generations or writing
prompts themselves), scores for mental exertion may vary. This
same discrepancy likely explains the lack of statistical significance
in the difference in ratings for the NASA-TLX effort category. From
these results, we conclude that DynEx more successfully
allowed users to create a final application as compared to the
Claude Artifact baseline.
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Exploratory Programming Claude Artifact DynEx p-value t-statistic
Divergent Thinking: To what extent were you able to explore differ-
ent conceptual options using system X?

4.2 6.1 0.0066 -3.52

Convergent Thinking: To what degree were you able to better de-
velop/specify your idea using system X?

3.4 5.9 0.00015 -6.23

Idea Realization: To what degree was the code able to realize your
idea when using system X?

5.2 5.5 0.678 -0.43

Application Complexity: How complex is the prototype produced
by system X?

3.7 4.9 0.024 -2.71

Table 2: Average Participant Score for Exploratory Programming Metrics Between Claude Artifact and DynEx. For all questions,
a score of 7 is best (i.e., for all comparisons, a higher number is better). The results from paired t-tests are also listed; statistically
significant p-values (p < 0.05) are in bold.

Mental Workload/NASA-TLX Claude Artifact DynEx p-value t-statistic
Mental Demand: How mentally demanding was the task when using
system X?

3.2 4 0.280 1.15

Physical Demand: How physically demanding was the task when
using system X?

5.7 5.7 1.0 0.0

Temporal Demand: How hurried or rushed was the pace of the task
when using system X?

4.7 5.4 0.242 1.25

Performance: How successful were you in accomplishing what you
were asked to do when using system X?

4.2 5.9 0.003 -4.02

Effort: How hard did you have to work to accomplish your level of
performance when using system X?

4 4.8 0.196 1.39

Frustration: How insecure, discouraged, irritated, stressed, and an-
noyed were you when using system X?

4.6 4.8 0.785 0.28

Table 3: Average Participant Score for Mental Workload/NASA-TLX Metrics for Claude Artifact and DynEx. For all questions, a
score of 7 is best (i.e., for all comparisons, a higher number is better). This includes questions such as mental/physical demand -
a 7 indicates that there was low exertion. The results from paired t-tests are also listed; statistically significant p-values (p <
0.05) are in bold.

Figure 7: Average Scores forClaudeArtifact andDynEx for ex-
ploratory programming metrics. The difference in averages
is statistically significant for Divergent Thinking, Conver-
gent Thinking, and Application Complexity.

4.4 General Qualitative Findings
4.4.1 DynEx’s Design Matrix inspired new solutions. DynEx’s De-
sign Matrix enabled participants to consider ideas they had not
thought of, broadening their initial concept and allowing them to
adequately explore the design space. P3 prototyped an app that
recommended restaurants based on friends reviews. She noted: "It
was really cool that it gave me ideas – otherwise I would have gone
with what I had imagined ...[initially, which was not as good]". She
had pictured a typical, feed-like-layout, but through DynEx’s ex-
ploration, ended up prototyping a card-swipe interaction that she
enjoyed more.

P5 experienced something similar, stating that "For every [entry
in the matrix], it included [ideas] that I wanted, but also considered
options that I hadn’t considered but wanted to build...it did a good
job of articulating ideas that I had in my mind, touching on tan-
gential pieces that I might be interested in but didn’t know how to
bring together." P5 created a addiction recovery application, and was
particularly intrigued by using cognitive behavioral theory (CBT)
principles brainstormed in the Approach dimension. He ultimately
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created an app that allowed him to journal triggers, relapses, and
good days, utilizing CBT help identify unhelpful thoughts.

P8 created a prototype to aggregate concert tickets based on
value-for-money – he had been thinking about this idea for the
past two years, but the Design Matrix was able to help him make
progress with new insights. He stated,"even though I kind of knew
what I wanted to do, I really wouldn’t have thought of these steps
so fast. Stuff like: ’do you want a centralized database?’... [for even]
simple things like that, I would have to think for a much longer time
if I wanted to build it myself... it saved me from spending a lot of time
on unimportant things... and gave me conceptual freedom.".

On the contrary, Claude Artifact did not facilitate the exploration
of the design space, but rather, implemented prototypes exactly as
the user prompted. P2 noted that "with DynEx, there’s a lot more
time put into the [end-user of the prototype] and [a lot more] feature-
oriented thoughts...[with Claude], I didn’t know what to [prompt] at
times... since there were no recommendations." Additionally, P4 stated
that when using Claude Artifact, "[he] was just thinking on [his]
own... it did not come up with any of the ideas, [he] came up with all
the ideas". The Design Matrix gave users a better starting founda-
tion; P9 stated that DynEx allowed him to "incorporate [his] initial
idea and refine it... the brainstorming helped [him] think through
rough points [he] had missed out on". Exploring the design space
prevented users from design fixation, allowed them to ideate on
new solutions, and challenged their existing thinking.

4.4.2 DynEx’s prototypes are more feature-rich and intuitive. Users
were also pleasantly surprised by DynEx’s ability to realize more
intuitive and realistic applications. DynEx was able to generate
more relevant placeholder data and emulate a true user experience.
P2 noted that "having the faked data really helps with understanding
what is going on with the system and interacting with it", compared to
Claude Artifact’s "very simple" prototype with limited placeholder
data. P3, who created the restaurant recommendation app, stated
that she could not emulate a user experience from her prototype
with Claude Artifact because "[her] data could not mimic it... [it
didn’t even] have reviews"; in comparison, DynEx’s placeholder data
"helped a lot [for her to envision] the UI properly".

DynEx’s ability to consider many small details that worked to-
gether cohesively also helped realize more thoughtful and intuitive
prototypes. P6 had a vague application idea when initially prototyp-
ing – a friend-activity sharing app where friends could join other
friend’s plans. He eventually settled on a calendar-like interface,
but was still surprised by the comprehensive feature-set the pro-
totype provided, stating, "it suggested many features to answer the
foundational set of questions that were trying to be answered, such as
how to match people with friends, how to visualize the friend-sharing,
joining friend-sharing experiences... it created a pretty robust social
ecosystem surrounding the calendar experience." He felt as though
the final prototype "incorporated really different, very distinct UI
features that weren’t very connected to each other [at face value]
very well... it solved the problems it [set out to solve]." He indicated
interest in using this initial prototype as a starting point for a real,
production application for himself to build off of.

P8 also noted the intuitive features in his concert aggregator
prototype. With DynEx, the UI was formatted like a table, with

important information surfaced – the main user interaction priori-
tized searching for valuable concert tickets with low cognitive load.
In contrast, the UI for Claude Artifact had a feed view, with lots
of information about each concert and ticket, which P8 disliked
after interacting with the prototype. P8 greatly preferred DynEx’s
prototype, stating: "It was intuitive. It was feature-rich. It had all
the important features, like sorting by columns and sorting by genre,
dates, value-for-money etc...I liked the conciseness of the informa-
tion... contrary to [Claude Artifact’s] prototype which was... not-fit
for this use case.". Ultimately, users were satisfied with the cohesion
between features in DynEx-created prototypes.

4.4.3 Claude’s immediate feedback loop is engaging. Users viewed
ClaudeArtifact’s responsiveness favorably; theywere able to quickly
generate a UI based on limited prompts. P4 liked that Claude Ar-
tifact "showed the prototype instantly". P5 noted: "Claude is a chat,
which is effortless... because it didn’t force me to explore more, it didn’t
feel mentally demanding." Similarly, P9 stated that Claude Artifact’s
"translation from prompt to output to previewing code is very clear
and fast." Users disliked Dynex’s slower code-generation and the
dense-text they were required to read through when traversing
through the Design Matrix. P9 said that DynEx required "a bit more
mental effort because you had to think through...navigate... and read
through the matrix". Many users also commented on the speed of the
code generation; P1 stated that DynEx was "very slow" compared
to Claude Artifact. Almost all participants appreciated the speed of
Claude Artifact compared to DynEx, emphasizing the importance
of an immediate feedback loop.

However, participants did also note that this was a drawback in
terms of enabling a thorough design space exploration – because of
Claude Artifact’s inherently linear workflow, users only appended
features to their initial prototype, as opposed to trying out different
ideas. P4 noted: "[Claude Artifact] just did what I told it to do... [the
prototype] was what I expected". P8 stated: "I couldn’t even brainstorm
the fact that it could brainstorm," reflecting a broader trend among
participant usage patterns with Claude Artifact; participants did
not spend much time ideating with Claude Artifact because it was
not intuitive on how they could do so.

4.4.4 DynEx bridges the gap between design and engineering. Par-
ticipants appreciated the broader context and conceptualization
provided by the Design Matrix. Participants in our study had sig-
nificant technical experience but limited design experience, with
6/10 currently working as software engineers in industry. P2 stated:
"When it asks who is the impacted user, [it is like] what our design
person always asks." P8 said: "I appreciated that [DynEx] walked me
through the actual entire design experience, similar to how a product
manager thinks about a business question - thinking about who’s
the user? What are the user stories surrounding the users? And then
mapping those user stories to actual features." They appreciated the
contextual understanding about the design they gained through
traversing the Design Matrix.

5 Discussion
DynEx successfully enabled exploratory programming, facilitating
the transformation of abstract ideas into concrete prototypes. We
discuss how LLMs can significantly enhance and accelerate the
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process of exploratory programming. We additionally consider the
implications of unstructured and structured approaches towards
design exploration. Finally, we discuss the potential of the Design
Matrix acting as a liaison between designers and engineers.

5.1 LLM Techniques to Enhance Exploratory
Programming

One of the biggest challenges when using LLMs for design explo-
ration is guiding users towards adequate problem specifications.
DynEx was able to address this by providing users with a frame-
work for structured exploration of a design space based on specific
dimensions (Person, Approach, and Interaction). In many instances,
DynEx offered suggestions users intuitively understood but could
not fully articulate, supporting users with recognition over recall.
Exploring dimensions of the design space with DynEx also broad-
ened the scope of the exploration process. Our dimensions provided
natural parameters that users could repeatedly change to create
variations of prototypes. Ultimately, the true power of exploration
through dimensions lies in helping users specify their problems,
clarifying their design goals, and broadening their landscape of
solutions.

LLM code-generation abilities can transform the exploratory pro-
gramming process. Exploratory programming systems must con-
sider the ease or difficulty of exploration when prototyping. With
LLMs, users can prototype UIs rapidly without compromising the
complexity of the application through self-invoking multi-modal
LLMs. While prototypes should be simple, they need a minimum
level of complexity in order to properly mimic the user experi-
ence. The self-invocation of generative AI allowed users to better
simulate a real application through images, placeholder data, and
dynamic data generation. It is a powerful idea for LLMs to leverage
their own advanced capabilities to create more functional applica-
tions – without it, recommendation systems wouldn’t be able to
recommend anything and applications with a visual component of
the experience would have no images to flight-test the experience.

To enable users to explore the design space even more thor-
oughly, we can incorporate dimensions past the Person, Approach,
and Interaction, as well as levels of specificity beyond Idea and
Grounding. For example, a new dimension that could be consid-
ered is multiple stakeholders – a marketplace application must
have functionalities for both buyers and sellers. Another potential
dimension is existing solutions – if designing an application for
a problem for which other solutions already exist, users should
be able to identify deficiencies in existing solutions to inform the
development of their own prototypes. Adding dimensions leads to
more thoughtful application designs that take into account more
aspects of the problem. Additionally, we could add levels of speci-
ficity outside of the Idea and Grounding levels, such as a row for
mock-ups that provide a visual of the dimension. Adding levels of
specificity to further crystallize concepts can result in the creation
of a more-detailed and cohesive application.

5.2 Structured vs Unstructured Design
Exploration

While users felt supported by DynEx’s structured design space ex-
ploration, they also appreciated aspects of Claude’s chat-interface –

namely, that it provided a more immediate feedback loop. Claude
Artifact’s interactions are simple and direct – users could type an in-
put and almost instantly receive a code output. This responsiveness
engaged users, motivating them to iterate more quickly on ideas.
Chatbot systems are very common; people keep making them, and
users are very familiar with them. They invite open-ended input,
allowing users be highly specific or intentionally vague in their
prompts. However, just because it is common, does not mean it is
the best paradigm. Comparing it effectiveness to a structured UI,
such as DynEx, is also important.

We found that users do not really use Claude Artifact to explore
a problem space, despite the fact that they could prompt the chat
to help them explore. Most participants instead worked through a
linear process, appending features to Claude Artifact’s initial design.
Linear processes are known to be problematic because they do not
facilitate an exploration of the broader design space, limiting the
complexity and intuitive way that features can work together in the
application. In fact, all users were unaware or did not even think of
utilizing Claude Artifact for exploration outside of feature-addition
purposes.

It remains an open question as to exactly how structured design
space exploration should be without compromising the implemen-
tation process. DynEx’s Design Matrix required users to explore the
problem space before implementation, but users may not always
be ready to engage with the detailed considerations that struc-
tured exploration demands. Future exploratory programming tools
should consider ways to combine the immediate feedback and flex-
ible prompting of Claude Artifact with the comprehensive design
exploration of DynEx. Perhaps a user could begin with with un-
structured exploration, and once sufficiently inspired, transition to
a more structured approach to tackle more complex solutions. De-
signing prototyping tools that can strike a balance between ease and
structure could encourage more individuals to explore unrealized
ideas, foster innovation, and solve real-world problems.

5.3 Bridging the gap between design and
programming

DynEx brings together design and programming for the user. Tradi-
tionally, designers and engineers are siloed during software devel-
opment - designers design and engineers implement, with product
managers attempting to bridge the gap between the two. However,
the design landscape is always changing, and context is bound
to be lost – even a product manager may not be up to date on
the latest changes. Addressing this disconnect between design and
engineering is challenging but likely useful; our user study with
individuals demonstrated the value in contextualizing implemen-
tations in design. However, in the working world, designers and
engineers work in teams. Designers must continuously update en-
gineers through shared Figma files as designs change. LLMs offer a
unique opportunity to provide a continuous feedback loop between
teams of designers and engineers and reduce this friction. Exist-
ing LLM-powered tools for established codebases, such as CoPilot
and Gemini, only support developers in implementation. DynEx
supported exploratory programming with design exploration for
individuals with successful results; the idea of incorporating design
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context into these LLM-powered systems could extend to tools for
software development workflow on teams.

6 Limitations and Future Work
Our user study was limited to ten participants, all of whom had
computer science backgrounds and many years of technical experi-
ence. This may not be representative of the broader population that
could benefit from an exploratory programming system – namely,
anyone with an idea to prototype, regardless of their past techni-
cal exposure. Future studies should expand the demographics of
participants to best inform the development of a system for users
of varying technical backgrounds. Our study was also limited in
the amount of time participants had to prototype. They had 30
minutes with each system – with additional time, participants may
have created a variety of prototypes and compared them with one
another to emulate a richer prototyping experience. Future studies
should examine how users interact with the system when given
more time.

Our user study also only used Claude Artifact as a baseline. Al-
though we conducted a brief exploration which suggested Claude
Artifact as being the most suitable as a baseline compared to other
existing LLM-based tools, future work could involve comparisons
between more systems in order to identify specific components
or design-choices that are effective in supporting exploratory pro-
gramming. Furthermore, while users were given an introduction to
Claude Artifact, they were still quite inexperienced; experienced
users might use Claude Artifact as a tool for prototyping differently
than novices.

Our system uses Claude 3.5 Sonnet for coding, and while very
powerful, it introduced certain limitations. Most notably, Claude
has a token cap of 4096 tokens, where API calls can only return
approximately 450 lines of code. 450 lines of code is enough to
prototype most applications; however, users were limited in com-
plexity when they attempted to add features. Additionally, users
expressed dissatisfaction with DynEx’s speed, noting that Claude
Artifact offered a faster feedback loop. API responses from LLMs
often return undefined code, requiring extra steps for cleaning and
debugging the code in our system, which slowed down the proto-
typing process. As LLMs improve, these "clean-up" steps will also
become unnecessary, providing a faster experience. Finally, because
our system is built on top of LLM capabilities, which are far from
perfect, they could return sometimes buggy or broken code. Users
had to either regenerate or manually debug to handle these failures.
We expect these issues to improve as LLMs themselves do. As new
foundational models are released, they should continually be in-
serted and experimented with within the system to measure effects
on performance.

While traversing through the Design Matrix while using DynEx,
users expressed a desire for simpler and more readable language.
Future work can integrate LLM-summarization capabilities or other
NLP techniques to improve clarity, succinctness, and cognitive load.
In addition, DynEx currently does not allow users to continuously
brainstorm additional features during implementation. It would be
beneficial to help users identify what other features to explore once
the initial prototype is complete, instead of the user being left to
their own devices in improving the initial prototype.

Code-generation abilities of LLMs will undoubtedly improve and
accelerate exploratory programming; blending design exploration
and implementation must also be aligned with these developments.
Our work explores the role of the Design Matrix in understand-
ing the problem space for exploratory programming. Future work
should continue investigating other approaches to how LLMs can
effectively bridge the gap between design and implementation and
enhance the exploratory programming process.

7 Conclusion
The advancement of LLMs poses a unique opportunity for ex-
ploratory programming. LLMs can generate code rapidly and also
help users enhance and refine their problem space. In this paper, we
presented DynEx, a system to accelerate exploratory programming
through a structured, LLM-guided Design Matrix and implemen-
tation through iterative LLM code-generation. We also introduce
self-invoking multi-modal LLMs as a technique for LLM-based ex-
ploratory programming, allowing for faster creation of diverse and
functional prototypes. Through our user evaluation with 10 tech-
nical experts, we found that DynEx’s Design Matrix allowed to
users to explore, refine, and realize feature-rich applications suit-
able for prototyping. We conclude by discussing how systems like
DynEx can help bridge the gap between design and implementation,
empowering a broad range of individuals to bring their ideas to life.
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A Few-shot Examples for the Design Matrix

Figure 8: Few-shot examples for entries in the Design Matrix
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